

Ist eine endogene Kreatinin-Clearance bei der Jahreskontrolle nach Lebertransplantation (LTX) im Kindes- und Jugendalter notwendig?

Lainka E¹, Willuweit K¹, Kathemann S¹, Hoyer PF¹, Gerner P¹ 1 Universitätskinderklinik Essen, Kinderklinik II

Einleitung:

Die Kreatinin-Clearance als Nierenfunktionsparameter ist in der Transplantationsnachsorge wichtig. Zur Bestimmung der glomerulären Filtrationsrate (GFR) gilt die endogene Kreatinin-Clearance (KC) im 24 h Sammelurin als Goldstandard. Erfahrungsgemäß ist der Sammelurin fehleranfällig und bedeutet für die Kinder am Sammeltag eine Einschränkung.

Methodik:

Wir berechneten die GFR nach 5 Formeln:

Kreatinin-basierte Formeln

alte Schwartz-Formel (F)

GFR (ml/min/1,73m²) = Körperlänge (cm) x K x S-Crea (mg/dl)⁻¹ K = 0,45 (1.Lj), 0,55 (ab 2. Lj), 0,7 (m, postpubertär)

Counahan-Barratt-F

GFR (ml/min/1,73m²) = 0,43 x Körperlänge (cm) x S-Crea (mg/dl)⁻¹

endogene KC

GFR (ml/min/1,73m²) = U-Crea x Sammelurinvolumen (ml/24 h) x

(S-Crea (mg/dl) x 1440 min)⁻¹

Cystatin C-basierte Formeln

Grubb-F

GFR (ml/min/1,73m²) = 84,69 x S-Cyst (mg/l)^{-1,68} x 1,384

(bei Kindern < 14 J)

neue Schwartz-F

GFR (ml/min/1,73m²)= 39,1 x (Körperlänge (m) x S-Crea (mg/dl)⁻¹)^{0,516} x

 $(1.8 \text{ x S-Cyst } (mg/l)^{-1})^{0.294} \text{ x } (30 \text{ x HST } (mg/dl)^{-1})^{0.169} \text{ x } (1.099)^{männlich} \text{ x}$ (Körperlänge (m) x $1.4^{-1})^{0.188}$

Ergebnisse 2008/2009:

Auswertung von 70 Kindern (38 m, 32 w, Median 9, Variationsbreite 1-17 Jahre):

- 1. Für die Medianwerte zeigt sich eine gute Übereinstimmung für die endogene KC, Counahan-Barratt-F und die neue Schwartz-F. (Tabelle 1) Die alte Schwartz-F erzielt 10-15% höhere Werte als die endogene KC, und die GFRs nach der Grubb-F liegen in 44 von 70 Fällen oberhalb der Norm.
- 2. Die Ergebnisse sowohl der alten und neuen Schwartz-F als auch der Counahan-Barratt-F korrelieren mäßig mit der endogenen KC, während die Grubb-F keine nennenswerte Korrelation liefert. Die neueren Näherungsverfahren (Counahan-Barratt-F

Schlussfolgerungen:

1.Die neue Schwartz-F und die Counahan-Barratt-F sind im Gegensatz zur Grubb-F geeignet, die GFR gut abzuschätzen und sensitiv pathologische Werte zu detektieren.

2.Bei Nierenfunktionseinschränkung sollte die Diagnostik erweitert werden. Auf einen 24 h

Diagnostik erweitert werden. Auf einen 24 h Sammelurin in der Routine kann verzichtet werden.

	Median	Variationsbreite	Patienten
Kreatinin mg/dl	0,7	0,48-1,46	71
Harnstoff mg/dl	14	5,0-37,0	71
Harnsäure mg/dl	4,6	1,2-10,3	71
Cystatin C mg/l	0,76	0,5-2,1	62
Schwartz-Formel *	104	71-275	71
Endogene Clearance *	84,5	59-136	32
Counahan-Barratt Formel *	80	56-215	71
Formel nach Grubb *	192,5	24-352	62
neue Schwartz-Formel *	84	55-119	62

Tabelle 1: Nierenretentionswerte und -funktion, *ml/min/1,73m²

	alte Schwartz-F	Grubb-F	Counahan-Barratt-F	neue Schwartz-F
endogene KC	(r) 0,45	0,18	0,47	0,44
	(p) 0,009	0,36	0,007	0,016
	n = 32	32	32	32
Sensitivität 25%	alte Schwartz-F	0,23	0,93	0,72
Spezifität 92%		0,08	<0,0001	<0,0001
		62	70	62
Sensitivität 18%		Grubb-F	0,36	0,52
Spezifität 100%			0,004	<0,0001
			62	62
Sensitivität 75%			Counahan-Barratt-F	0,76
Spezifität 33%				<0,0001
				62
Sensitivität 83%				neue Schwartz-F
Spezifität 59%				

Tabelle 2: GFR-Vergleich, Pearson Korrelationskoeffizient (r), p-Wert für Korrelation (p), Anzahl (n); Sensitivität und Spezifität bezogen auf die endogene KC < 90ml/min/1,73m²

3. Pathologische GFR-Werte < 90 ml/min/1,73m² werden nach der alten und neuen Schwartz-F, endogenen KC, Counahan-Barratt-F und Grubb in 19%, 66%, 63%, 72% und 10% der Fälle beschrieben. Sensitivität von der Counahan-Barratt-F und der neuen Schwartz-F sind am besten. Insgesamt liegen Spezifität und Sensitivität bei der neuen Schwartz-F am günstigsten. (Tabelle 2)